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Abstract. The geometrical structure of the gauge equivalence classes of reducible
connections are investigated. The general procedure to determine the set of orbit types
(strata) generated by the action of the gauge group on the space of gauge potentials
is given. In the so obtained classification, a stratum, containing generically certain
reducible connections, corresponds to a class of isomorphic subbundles given by an
orbit of the structure and gauge group. The structure of every stratum is completely
clarified. A nonmain stratum can be understood in terms of the main stratum corre-
sponding to a stratification at the level of a subbundle.

1. INTRODUCTION

Given the fact that the fundamental interactions in elementary particle physics are
described by gauge theories, the study of gauge transformations acting on various fields
entering in the theory is one of the first steps towards the understanding of the funda-
mental laws of nature. In the present work we study gauge transformations within a pure
Yang-Mills theory, having in mind path integral quantization and anomalies. That is here
we are not interested in the solutions of the classical equations of motion but in the full
space of connections. In what follows, we would first like to explain how the problem
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ariscs and make some considerations about its physical significance.
The Yang-Mills theory, defined on a principal bundle P of a compact, connected
manifold M with structure group G, is determined by the action functional

(1) S:A-R

where A is the space of gauge potentials or connections on P . The gauge transforma-
tions (the gauge group) G are acting non trivially on 4 , but physics should not depc..d
on them. This is guaranteed, at least at the classical level, by the G-invariance of S.
So eq. (1) is equivalent to

(2) S M-R

where M is the space of the gauge incquivalent conncctions, the orbit space of the G
actionon A, M = A/G . Itis well-known that several physical properties of the theory
are connected with the topological and geometrical structure of M . Anomalies are such
an cxample which has received a lot of attention in recent years [1]. Since A is an affine
space, it is obvious that the nontrivial topological structure of M is the result of the
gauge group action on 4 [2]. In general, this action Icads 10 a nontrivial stratification
on A [3]. The maximum symmetry group associated with a given connection 4y € A,
the stability group of 4,

3) Ga, = {¥ €G | %" 49 = Ao}
in general, is not isomorphic to the corresponding stability group of a different con-
ncction A, . That means G, % Ga, for A, # A, is possible. The stability group

J =G, is isomorphic to a subgroup of the structure group & . The connections which
belong to a given stratum of orbit type (J) are given by

4) AP = {AcA|G,=vdoJoyp ' withyeG} .

If we denote by S the set of orbit types which appear in 4 by the action of the gauge
group G , we obtain the stratification on A :

(5) A= AV
(N)es
(6) M = U M

(N)es
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S is a countable set {3} and A € AYY? can be considered as the connections with the
symmetry type (J) .

Except for the main stratum it is not at all clear as yet what role the stratification
pléys in physics. One of the main purposes of this paper is to clarify those features of
the stratification which must be known for any further progress towards such an under-
standing. In [4] it was mentioned that an internal symmetry (J) leads to a conservation
law. So we may ask whether the stratification of 4 tells us which conservation laws
can occur in a Yang-Mills theory. One may further investigate the connection between
stratification and anomalies [5]. Centainly, connections not belonging to the main stra-
tum are reducible and are of special interest whenever a mechanism of the reduction of
the structure group is involved. One may also investigate the connection between strati-
fication and spontancous symmetry breaking. Reducible connections are also needed in
determining the low energy structure of superstring theories [6] and play a special role
in topological quantum field theory [7].

In this paper we present the solution of two problems conceming the stratification.
We make use of the results of [3] but go beyond them, taking into account the ideas of
G-Theory [8]. Firstly, with given data the principal bundle P(M,G), dim (M) > 2,
we show how to obtainthe sct S = {(J)} of orbit types which enter in the stratification
generated by the gauge group G on the space of connections .A . This result was proven
in [3] by associating a given connection A with the holonomy bundle Q (M, H) , us-
ing the isomorphism G, ¥ Z,(H,) (see below). Here we associate AT, as defined
in eq. (7), with the maximal bundle Q,(M, H;) and show how to obtain the set S.
Secondly, the structure of a fixed stratum A‘/) | called the orbit bundle, is analyzed (1):
we first consider the standard principal bundle AY(M‘ N(J)/J) of AY) (2) con-
nected to the stability group J

) Al ={4e€A|G =T},

and which has structure group N(J)/J with N(J) the normalizerof J in G. In
addition, for a fixed point p, € P, we consider the holonomy bundle of A Q, =
Q4(M,H,) and the subgroup H, := Z,(Z5(H,)) = Z4(J) . with Z5(H,) the
centralizer of the holonomy group H, in G . Extending the structure group of Q4 to
H; we obtain a new principal bundle Q; = Q,;(M, H;) . The subbundle @Q; allows
to reduce all connections A4 € A7 to Q ; and to obtain the set ’ZQJ as a subset of the
main stratum in AQ] (the space of connections in Q). Then, showing that N(J)/J

(1) This is particularly relevant for the non main orbit type strata,
(2) This can be shown by applying the slice theorem proven in {3] and the results of [8].
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isisomorphic 1o EQ; = gQ,/C( H;) where QQJ is the gauge groupin Q; and C(H;)
the center of H;, we obtain the isomorphism

(N >~ 4
(8) AT A, x g, G/,

This result is of course independent of the choice of the representative J in (J) . It
implics further that we have the isomorphism:

) MWD > Ay Gy

The plan of the paper is as follows: In sect. 2 we prepare for our main result and classify
the set S of orbit types determined by the stratification. Some of these results were also
obtained in an unpublished work [3]. In scct. 3 we analyse the structure of a given orbit
bundle and dcrive as our main result the above isomorphisms. Sect. 4 presents some
conclusions.

2. THE CLASSIFICATION OF THE ORBIT TYPES OF THE G-ACTION ON
A

The aim of this scction is to obtain a characterization of the orbit type (J) ina way
which allows to determine the set § of orbit types which appear in the stratification of
the space A by the gauge group G, as given in eq. (5).

2.1 The maximal subbundle related to A7

Looking for a characteristic property of the connections in the orbit bundle A() |
it scems uscful to restrict oneself first 1o the associated standard principle bundle A7
whose clements correspond to the same fixed stability group J . Furthcrmore, it is well-
known [9] that fora p, € P and A € A’ | the stability group J is connected with the
holonomy group H ,(py) by

(10) J ¥ Z5(Hy(py)) -

That means that the maximal symmetry group J of A isconnected with the reducibility
property of A . Unfortunately, this property is A-dependent , as different connections in
A’ may have different holonomy groups and different holonomy bundles. There exists,
however, another group, the maximal group associated to J, H; and another subbundle
of P, the maximal subbundle @Q; whichis relevant 1o the standard principal bundle A’
itself. Therefore, as we arc going to show, the Q; can be uscd to characterize A’ and
conscquently also to characterize the orbit bundle A(Y) . We start with a few definitions.
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For A with stability group J, the holonomy bundle at p, € P with holonomy
group H, isgivenby Q4 = Q4(M, Hy), . Then we define the maximal group H,
associated with H, by

an Hy = Zg (Zg(Hy))
and the maximal subbundle in P associated with Q4 by
(12) QJ:=QA.HJ'

Furthermore, a subbundle Q( M, H) of the principle bundle P(M,QG) is called max-
imalif Z(Z,(H)) = H . With these dcfinitions the following proposition is valid:

PROPOSITION 1. Every conncction A € A’ can be reduced uniquely to a connection on
the subbundle Q; , and Q; is the maximal subbundle of P where j € J is constant.

This can be seen as follows: For A € A’ with stability group J and j € J, we
have y;A = 7 YAj+ j'dj = A.(3) This means that the equivariant map

J:P—-G

is constant on horizontal curves in P . Therefore, the restriction of j on the holonomy
bundle Q (M, H,)p, (4) is also constant. On the other side, every equivariant map-
ping j : P — G whose restriction on (4 is constant, belongs to the stability group of
A(jeJ).Sowchavefor j€J and pe Q,,with h€ H,

(13) J(ph) = h~1j(p)h = j(p)

and it follows that

(14) JET Q4 — Zg(Hy) constant .
In addition, we have

(15) j(pg) =g ' j(p)g = j(p)

(3) We make the identification between the vertical automorphisms on P, ¢y € Auty(P) = G
and the equivariant mappings C(P,G) = {f : P — G equivariant} givenby ¥¢(p) = p-f(p) .

(4) Since all our considerations are related to some fixed po € P, we in general do not denote
this dependence explicitly.
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forpe Q; and g € Z,(Z,(H,)) = H;. That mcans that ; is constant on the
subbundle Q; of P givenby Q; = (, - H; with structure group H;. @; is the
maximal subbundlc of P on which j can be constant. The same considerations apply
also to another connection A’ € A7 from which follows that also the holonomy bundle
Q4 1s contained in the maximal subbundlec ;. That means that for the holonomy
group H, ofany A€ A7, H, < H, isvalid.

The reduction thecorem of connections [ 10] guarantces then that every connection A
with stability group J is reducible to a connection on the subbundle @ ; . [

The possible difference between the holonomy group H 4, and the structure group
H,; of the maximal subbundle (J; is illustrated in the following example with G =
SU(3):

H, J H,
SU(2) U1 U(2)

(16) U x U(1) U1 x U1y U1) x U(1)
U U(2) U(1)
1 SU(3) z,

The choice of the maximal subbundle Q; gives risc to the isomorphism given by

B:J—Zs(H))
an
Jrz=j(q) € Zo(Hy) .

Note that 3 depends also on the choice p, sincc we have by construction H; =
H,;(py) and Q; = Q,(p,) . Fora p=p,g with g € G we have

QJ(P) = QJ(P()) g
and
Zo(Hy(p) =g ' Z(H;(po)) g -

At this place, we would like to remark that, in constrast to the holonomy group, the
maximal group H, isalwaysa closed subgroup of G'. Thercfore the reduced subbundle
Q, is equipped with the induced topology.

2.2 The independence on the choice of a representative in the orbit type

We have now to extend our considerations from A’ to A) . That means we have
to show the independence of our results on the specific choice of the representative J
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in (J). As already mentioned, the stratification of A is classified by the set of the
orbit types S = {(J)}. The stratum A which is given by the orbit type (J) , is
represented by

A(J) - AJ X NI Q/J

which is independent of the choice J € (J) . For J,J' € (J) with J' = 1/),]11);' for
some %, € G, wehave A7 = 3 A7 which means

(18) B DL Na

Now the question arises which is the connection between @, and @, . The answer is
given by the next proposition:

PROPOSITION 2. If the stability groups J and J' are G-conjugate with J' = y;0J o
ap;‘ for some ¢, € G, then there exist maximal subbundles corresponding to J and

J' sothat Q=9 (Q) .

In order to prove this, we would first like to show a stronger formulation of the above
proposition: under the same assumptions as above, there exists a g € G so that

(19) Qp=9,Q) 9.

For A, A’ € AY) with stabilizer the groups J and J' respectively, and

(20) J'=fJf' wih feg

we consider the maximal subbundles associatedto J and J',Q, and @, , respectively.
We may now ask how Q, and Q, are related to each other. Taking j € J and ;' € J'
with -

@1y Hlo,=2 and  Jjlg, =2

we first show that there exists a g so that

22) z=g2'gt.

For p € Q,,p € Q; ,wecanhave a g so that

(23) v;'(p) g7 =peQ;.
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From (21) we have
(24) Jp=z —and  j(p)=2

and from (20), (21), (23) and (24) we obtain

(25) z=j(p) =7 (d)]'(p’) g"‘) =gJ (d},"(d)) g
and
(26) 2= 70 = f) S £ =5 (0 o)) =5 (')

so that indeed

7 z=¢92¢".

Now, sincc we know that given j]Qj =z and j'|g, =2/, thcreexistsa g € G with
z=gz'g"", wehave forevery p € Q ap:= Y; (p)-g ' with

28) i =7 ('@ 0 ) =95 (9,0)) ¢ =9/ Gg

So from the maximal property of ;. it follows that p € @ , so we have shown that
29) wfl (QJ') '9“1 CQy and Q; C 1z’f (QJ) g -

Similarly, starting with p € Q; , we also obtain

(30) v, (Q;) -9 CQy

and we have shown that

@31) Qr=v,(Qy) 9.

Using now the fact that Q. - g ! = Q' is also a maximal subbundle, we have

(32) Q= 4,(Q))

which is precisely the conjecture of the proposition. =

It is casy 1o scc that from Q) = 1,0/(Qj)g it follows that J' = wf J1/)f1 .
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2.3 The classification

Having in mind the results of the previous subsections, we can contruct a relation
between the stratification of A eq. (5) on the one side, and some specific reduced sub-
bundles of P on the other side. The interest focuses on the strata other than the main
stratum A = AXS)

We consider the set P of reduced bundles @ with structure group H < G so that
H = Zy(Z;(H)) , (this means that Q is maximal), and the property that if Q is not
connected and H’ is the structure group of a connected component, then there exists
no maximal subgroup H < G with H' < H < H (5). Then we define on P, the
set of maximal subbundles of P with the above restriction, the following equivalence
relation:

(33) Q~Q+3¢Y;€G and geG sothat Q' =9(Q)g.
We can now define the set T := P/ ~ which is bijective to S via the mapping.

ST

(34)

So we have expressed the stratification of A by classes of reduced bundles in P . That
means that the stratification is given by group-theoretical and topological informations.
As one expects, there may be topological obstructions against the existence of reduced
bundles [11]. The set S = T itself is a countable set [12, 13].

In order to demonstrate the relation between S and T , we study the following ex-
ample, where S 2 T . We consider the trivial principal bundle P = S x SU(2) . The
possible maximal subbundles are P itself and Q, for n € N with

Qo=58tx2,, Q=8xU, Q=8

(35)

~ and Q,=S%/Z,, for n>3.
So we have
(36) T={P{Qulnen} -

The stratification of A is determined by T :

(5) Without this restriction there is no corresponding holonomy bundle.
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The stability groups are given by
(37 Jo={jlj:Qy = Zgyp(H,) constant }

where Hy = Z,, H, = U(1) for n> 1" and

(38) Zgyn(Hy) = SU2), Zgyp(H,) = U1
and
(39) A= A7) | ] A4t

neN

A(%2) s the main stratum.

3. THE STRUCTURE OF THE ORBIT BUNDLES A/

As alrcady mentioned in the previous section, the standard principal bundle A7,
associated to the orbit bundle .4¢Y? , contains some information about the reducibility of
its clements but this information is not complcte. In this section we would like to give
the precisc characterization of 47 which is related to the reducibility propertics of its
clements. This leads to a principal bundle isomorphism between 47 and a subset ./TQJ
of the main orbit bundle .AQJ in the space of conncctions AQ: of the maximal bundle

Q-
3.1 The isomorphism between 47 and ,ZQJ

In this subscction we give the precise definition of the space qu and in addition

prove the bijection between A7 and .A
Let Q; = Q;(M,H;) bca maxnmal subbundle of P ,associated to the stability
group J <G, Ag  the space of connections on Q; and

(40) B:J—-G

the homomorphism induced by @; from the stability group into the structure group.
The space ,ZQJ is then defined by

@n Ko, ={AeAq | 250H,) = BN }
with H 4 the holonomy group of A. From this definition it follows that

AL C Ay, CAg, C Ag,
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where KQ: is the main orbit bundle in Q; and Aigj are the irreducible connections in
Q; - The following proposition is valid:

PROPOSITION 3. The connections in P with stability group J are isomorphic to ./—qu :

J
Al .AQ] .
In order to see this, let
[ 2 .A] — .AQ
(42) !
A — Ared

be the mapping which associates to every connection A € A’ its reduced connection
A ecQ s - Every connection from A’ is uniquely reducible to a connection on Q In
hence this mapping is injective. Since A and A™ have the same holonomy group, it
follows that

(43) ZG( HAM) = B(J)
so we have
a: Al > ./IQJ .

Note also that the stability group of A™ is given by S(J) N H;=C(Hj).

In order to show the surjectivity, we take w € IQ] . So there exists uniquely an
clement A € A with w = A™ = a(A) since for the holonomy groups we have again
Hya = Hy and Z5(H,) = Zo(H,) = B(J) . So J is the stability group of A and
the surjectivity of « is proven. ]

In general IQ] is a subspace of the main orbit bundle IQJ . This situation is re-
lated to the fact that the stratification contains only some incomplete information about
reducibility. Taking as anexample P = M x SU(3), M contractible, we can see that
indeed “IQJ # ZQ, may occur. In the following table we exhibit the various stability
and maximal subgroups of SU(3) .

J : H,

1 z, SU(3)

2 Ug(1) U(2)

3 Up(D) xUp(l)  Up(1) x Urp(D)
4 U(2) Uy (1)

5 SU(3) z,
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Here Up(1) denotes the U(1) of the Hypercharge and Up(1) the U(1) subgroup
gencerated by the 3-component of isospin. Corresponding to case 3, a connection w on
the maximal subbundle Q;,(M, Uy (1) xUp(1)) which is reducible to a connection on
the subbundle QJ3( M, Uy (1)) isconsidered. Since HJJ is an Abelian group, we have
AQJ3 = AQ/; . This w can be considered as a connection 4 on P (with A™ = w).
Its stability group is given by Z,(H,) . Since w is reduciblc to H, = Uy (1) , we
have Z.(U(1)) = U(2) which means that it belongs to Al “ZQM . So we have

44) .KQ“ - ZQ“ .

In contrast in casc 2 we have AVQJ = KQJ .
2 2

3.2 The group isomorphism between N(J)/J and G, /C(H))

As we alrcady know, JZQ, is a subspacc of KQ; , the main orbit bundle in .AQJ .

Since the group EQ, acts on A_Q, freely, AQ, is also a principal bundle with fibers
isomorphic to QQ]/C( H;) = gQ, . We may therefore suspect the bijection shown in
the last proposition between 47 and J‘IQ, 1o be a principal bundle isomorphism. In
order to prove that this is indeed the case, we first show the group isomorphism between
NY/J and QQJ/C(H,) , and then the bijection between A /G and KQ,/EQ, .

PROPOSITION 4. There is the group isomorphism N(J)/J = QQJ JCCH ;).

The main step to prove this isto realize that N(J) canbe writtecnas N(J) = gQ/ -J.
We first define the group

(45) N =={f:Q; = No(Zg(H)) | f € Gg, cquivariant} .
For n€ N(J) and J,7' € J, we have
(46) njn't=y
and for ¢ € Q; we have
(47) n(g) j(q)nlg) ' =7"(g)
with j(g). j'(q) € Zg(H,) . So n(p) € Ng(Z;(H;)) and N(J) < N(J).
Now we determine the condition for n& N(J) tobeclementof N(J) . For ¢ and
p € Q,.since j(g) = j(p) and j'(¢) = j'(p) . we have

(48) p)j(pyn(p) =@ i(pnlg) !
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and
7(p) = n(p) 'n(q) j(p) q) ' n(p)
= n(p) "'n(q) j(p)(n(p) "n(g)) "

and ‘n(p)*lTI(Q) c ZG(ZG(H])) = HJ Vp,q € QJ .
So we can write for a fixed p € Q;

49

(50) n(q) = n(p) (n(p) 'nq))
and we define
p1:Q;— Hy
g p1(9) = np) " 'nlq) .
So we have n(¢) = n(p)p,(q) . Since Z (H;) isclosed in G, we can write

(5D

(52) Ng(Zg(H))) = Z(Hy) - Hy

(53) n(p) = z(p) h(p)

with 2(p) = 2(q) € Z,(H;) and h(p) € H; wecan write

(54) n(q) = 2(q) (@)
with

:Q;,— H
55 14 J J

g ¢(q) = h(p)p,(9)
equivariant. Since zh = hz, ¢ is indeed equivariant, which follows from eq. (54):
(56) 2p(gh) = n(gh) = h™'(h = h~'zp()h = zh~ () h
p € Gy, and we have shown that
57 N(J)=Gq,-J .
From this, it follows that
(58) N(D/T =Gy, - J[J=Gq [ING,, ¥Gq, /[C(H))
which completes our proof of the above proposition and we have the group isomorphism

B: NI — Gg /C(H))
[n] — L]

(59
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3.3 The principal bundle isomorphism between A7 (M) G/J) and jQJ(HQJ,
Gq,/C(H))

PROPOSITION 5. There is the isomorphism A /G = Ay /G .

In order to prove this, we first define the mapping

R -‘{'QJ/—Q-QJ - AV /G
(w] = y({w]) = {aw)]

(60)

with & = & !, the inverse of o (sce proposition 3) and where w € 'ZQJ and &(w) =:
& € AY) . We first have to show that « is well defined: taking [w,] and [w] with
wy = ow and ¢ € QQJ »we use a(Pow) = ¢ (&(w)) . This is the equivariance of
the map & under the gauge group. On the right hand side of the last equation ¢, € QQ]
is uniquely extended to P . We have

(61) [w)] = [a(Yow)] = [P (a(w))] = [&(w)]

so that ~ is well defined.
For the injectivity of « we have to show that from w and 6 € AQ; , with

(62) Y(lwl) =~(18]) = [A]

[w] = [6] isvalid. From eq. (62) we have &(w) = A= & € A7 and
(63) &(0) = P;A= ;0 € A withy, € G .

Since @, ¢ € A7 for j € J, we have

(64) JTodib =y =yio)w

which means that ¢, € N( J) for which we can write ¢, = 7, 0 ¢, with ¢, € gQJ
and j, € J, as was shown in the previous proposition. So we have

(65) 0= a9j) = a(P,@) = Yo (@) = Prw

which shows the injectivity of ~.

For the surjectivity we have to show that every [B] € AY/G is the image of
some clement of ,IQJ/EQJ . If B has J' as its stability group, it is possible to find
an f € G, sothat J' = f 'Jf. Then ¢;B = A has J as its stability group and
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a(A) = A € Ay . Sowehave &(A™) = A and 7([4™]) = [A] = [B] which
shows also the surjectivity of ~. =

'From the isomorphism between 47 and .qu , givenin subsection 3.1, and from the
last two propositions, the principle bundle isomorphism

(66) ANMD N [T = Ay (Myg,,Gq,/CCH )

can be shown immediately. Given the isomorphisms

o Al — .A'Q]
! i
i MO o M
67 Q;

and
B: N/ — G /C(H))
(nl  — [p]=38ln]
we have only to show that

(68) a([n*A) = B([n]) " a(A)

(with A € A7 and [n] € N(J)/J)is valid. This is easy to sec since we have the
equivariance of the map « (used already in the proof of proposition 5):

69 A= [n]"A=p"A=[p]"A
and
(70) a[[n]’] =a([p]"4) = [p]"a(A) = B([a) *a(4) .

With the above principle bundle isomorphism, we can express the orbit bundle AP by

(71) AD = Ay, Xgo oy G114 -

4. CONCLUSION

In this paper we have studied the nonfree action of the gauge group G on the space
of gauge potentials .A on a principle bundle P( M, G) . We have analysed the structure
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of the so obtained stratification on A and in particular the structure of a fixed stratum
A in the general case, where A() is not the main stratum. We were ablc to show
that cvery nonmain stratum AY) can be understood in terms of the main stratum which
corresponds to the stratification of the space of connections on a subbundle Q (M, H;)
of P and to give the general procedure which allows to determine the sct of orbit types
S = (J) gencrated by the action of the group G on the space A .

As yet, it is not at all clcar what role the stratification plays in physics. It may well
be that the stratification is an important clue in the quantization of Yang-Mills thcorics
whose role may have been completely overlooked. Our analysis constitutes the first
step in clarifying this question. In addition to this, the stratification secms to be closely
connected with the question of conservation laws, anomalies and even the mechanism
of spontancous symmetry breaking.

In order to recognize the structure of the stratum A | we observe that its clements,
the reducible conncctions, have in general different holonomy groups and conscquently
correspond to different holonomy bundles. The same is truc even if we restrict our-
sclves to a standard principle bundle A7, the connections with fixed stability group
J (AJ C ,4(”) . Nevertheless, as we have shown, therc exists a subbundle of P,
the maximal subbundle (¢, , and every conncction in A7 is reducible 10 a conncction
on @, . This «rough» reducibility is the property which characterizes the elements of
A7 . It is interesting 1o note the reason why this happens and that a direct construc-
tion of the maximal subbundle Q; may be realized and obtaincd by the methods of
G-theory discussed in [13]. Here we would like only to point out that the reason for
the correspondence between A7 and Q) is that both are standard principal bundles of
the G x G-actionon 4 and P respectively, with essentially the same stability group
isomorphic to J . This explains also the fact that the stratum A% corresponds to a
G x G orbit of Q; as it was shown in our sccond proposition (Ch. 2.2). From this
point of view the classification of the stratification (Ch. 2.3) also scems plausible. For
a given stratum A in particular, by the usc of its equivariant propertics, we werce
able to prove the following: the orbit spaces A(”/g a part of the configuration space
of Yang-Mills theorics, is isomorphic to the AQ /QQ AQ] is a specific subset (de-
fincd in (41)), of the main stratum of connections on the maximal subbundle (; cor-
responding to the stratum (J) (in some cascs it is isomorphic to it). Together with
the group isomorphism N(J)/J = QQ we have the principal bundle isomorphism of
N/T = AT = AP /G and Gy — Ay, — Aq, /Gq, with Go =Gy /C(H)) .
A’ , the connections with a fixed stabilizer J , is the underlying principal bundle of the
homogencous bundle A = A7 x v 977 -

With the above isomorphisms we can represent the nonmain orbit bundle A in
terms of (a part of) the main orbit bundle AQJ :

(71 A = A, xg,, 917
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