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Abstract. Thegeometricalst.ruclureof thegaugeequivalenceclassesofreducible
connectionsareinvestigated.Thegeneralprocedureto determinethesetoforbit types
(strata) generatedby theactionof thegaugegroupon thespaceofgaugepotentials
is given. In the so obtainedclassification,a stratum,containinggenericallycertain
reducibleconnections,correspondsto a classofisomorphicsubbundlesgivenby an
orbit of thestructureandgaugegroup. Thestructureof everystratumis completely
clarified. A nonmainstratumcan beunderstoodin termsofthemain stratumcoire-
spondingto astratificationat thelevelofasubbundle.

1. INTRODUCTION

Given thefact that the fundamentalinteractionsin elementaryparticlephysicsare

describedby gaugetheories,thestudyof gaugetransformationsacting on variousfields
enteringin the theory is one of the first stepstowardsthe understandingof thefunda-
mentallawsof nature. In thepresentwork we studygaugetransformationswithin apure

Yang-Mills theory,havingin mindpathintegralquantizationandanomalies.Thatishere
we arenot interestedin the solutionsof the classicalequationsof motionbut in the full

spaceof connections.In whatfollows, wewould first like to explainhow theproblem
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arisesandmakesomeconsiderationsaboutits physicalsignificance.
The Yang-Mills theory, definedon a principal bundle P of a compact,connected

manifold M with structuregroup G, is determinedby theaction functional

(1) S:A—~R

where A is thespaceof gaugepotentialsorconnectionson P. Thegaugetransforma-

tions (thegaugegroup)9 are actingnon trivially on A , butphysicsshouldnotdepc~d

on them. This is guaranteed,at leastat the classicallevel, by the 9-invananceof S.

Soeq. (1) is equivalentto

(2) S:M—R

where M is the spaceof thegaugeinequivalentconnections,the orbit spaceof the 9
actionon A, M = A/g. It iswell-knownthat severalphysicalpropertiesof the theory
areconnectedwith thetopologicalandgeometricalstructureof M. Anomaliesaresuch
anexamplewhich hasreceivedalotof attentionin recentyears[1]. SinceA isan affine

space,it is obviousthat the nontrivial topologicalstructureof /vt is the result of the
gaugegroup action on A [2]. In general,this action leadsto a nontrivial stratification
on A (3]. Themaximumsymmetrygroup associatedwithagivenconnectionA0 E A,

thestability group of A0

(3) 9A0={~E9I~Ao=Ao}

in general,is not isomorphicto the correspondingstability group of a different con-

nection A1 . That means ~‘

9A

1 for A0 ~ A1 is possible. The stability group
J :=

9A is isomorphictoa subgroupof thestructuregroup C. Theconnectionswhich

belongto a givenstratumof orbit type (J) aregivenby

(4) A:={AEA~9A=~oJo~with~Eg}.

If we denoteby S theset of orbit typeswhich appearin A by the actionof thegauge
group 9 , weobtain the stratificationon A:

(5) A= U ~
(J)ES

(6) M = U ~
(J)ES
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S is a countableset [3] and A E A~’~canbe consideredas theconnectionswith the
symmetrytype (J)

Exceptfor the main stratum it is not at all clear as yet what role the stratification
plays in physics. Oneof the main purposesof this paperis to clarify thosefeaturesof

the stratificationwhich mustbeknownfor any furtherprogresstowardssuchanunder-
standing.In [4] it wasmentionedthat an internalsymmetry (J) leadsto aconservation

law. So we may ask whetherthe stratificationof A tellsus which conservationlaws

canoccurin a Yang-Mills theory. Onemay further investigatetheconnectionbetween
stratificationandanomalies[5]. Certainly,connectionsnotbelongingto themainstra-
tumare reducible and are of specialinterestwhenevera mechanismof the reductionof

thestructuregroupis involved. Onemayalso investigatetheconnectionbetweenstrati-
fication and spontaneoussymmetrybreaking.Reducibleconnectionsarealsoneededin
determiningthe low energystructureof superstringtheories[6] and play a specialrole

in topologicalquantumfield theory [7].
In this paperwe presentthe solutionof two problemsconcerningthe stratification.

Wemakeuseof the resultsof [3] but go beyondthem, taking into accountthe ideasof

G-Theory[81.Firstly, with givendatathe principalbundle P( M, C), dim (M) � 2,
weshowhow to obtaintheset S= {( J) } of orbit typeswhich enterin thestratification

generatedby thegaugegroup 9 onthespaceof connectionsA . This resultwasproven
in [3] by associatinga givenconnectionA with theholonomybundle QA(M, HA)

ing the isomorphism 9A ~ Za( HA) (seebelow). Here we associateA’, as defined

in eq. (7), with the maximal bundle QJ(M,H,) and showhow to obtainthe set S.
Secondly,thestructureof a fixed stratum A~’~,calledtheorbit bundle, is analyzed(1):

we first considerthestandardprincipal bundle A’( Jvt~‘~,N( J) /J) of A~‘~ (2) con-
nectedto the stability group J

(7) A’:={AEAIgA=J},

and which hasstructuregroup N( J)/f with N( J) the normalizer of J in 9. In

addition, for a fixed point Po E P. we considerthe holonomybundle of A QA =

QA(M,HA) andthesubgroupH, := ZG(ZQ(HA)) = Z~(J),with ZG(HA) the
centralizerof theholonomygroup HA in C. Extendingthe structuregroupof QA to

H, weobtain anewprincipalbundle Q~= Q,( M, H,). ThesubbundleQ~allows
to reduceall connectionsA E A’ to Q, andto obtainthe setAQ~as a subsetof the

main stratumin AQ, (thespaceof connectionsin Q~).Then, showingthat N(J)/J

(1)This isparticularlyrelevantfor the nonmain orbit typestrata.
(2) This canbeshownby applyingthe slice theoremprovenin [3)andthe resultsof [8].
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is isomoiphic10 = g~/C(H,) where is the gaugegroupin Q~and C(H~)

the centerof H~, we obtainthe isomorphisni

(8) ~ - AQ X c01

This result is of courseindependentof the choiceof the representativeJ in (J) . It
implies further that we havethe isomorphisni:

(9) ~ _AQ~/cQ3

Theplanof the paperis asfollows: In sect. 2 we prepareforour main resultand classify

theset S of orbit typesdeterminedby thestratification. Someoftheseresultswere also
obtainedin anunpublishedwork [3]. In sect. 3 we analysethestructureof a givenorbit

bundleand deriveas our main result the aboveisomorphisms.Sect. 4 presentssonic

conclusions.

2. TIlE CLASSIFICATION OFTHE ORBIT TYPESOF THE C-ACTION ON

A

Theaim of this sectionis to obtain a characterizationof theorbit type (J) in a way
which allows to determinethe set S of orbit typeswhich appearin thestratificationof
thespaceA by the gaugegroup9, as given in eq. (5).

2.1 The maximalsubbundlerelatedto A’

Lookingfor a characteristicpropertyof the connectionsin the orbit bundle A~’~
it seemsuseful to restrictoneselffirst to the associatedstandardprinciple bundle A’
whoseelemenLscorrespondto thesamefixed stability group J . Furthermore,it iswell-

known[9] that for a E P and A E A’ , the stability group J is connectedwith the

holonomygroup HA(po) by

(10) J=ZG(HA(po))

Thatmeansthat themaximal symmetrygroup J of A isconnectedwith the reducibility

propertyof A . Unfortunately,this propertyis A-dependent,asdifferentconnectionsin

A’ mayhavedifferentholonomygroupsanddifferentholonomybundles.Thereexists,
however,anothergroup,themaximal groupassociatedto J, H~andanothersubbundle

of P , themaximal subbundleQ,~which is relevanttothestandardprincipalbundleA~
itself. Therefore,as we aregoingto show,the Q, canbe usedto characterizeA’ and
consequentlyalsoto characterizetheorbitbundle A~.1) Westartwith a few definitions.
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For A with stability group J, the holonomybundleat Po E P with holonomy

group HA is given by QA QA(M,HA)PO . Thenwe definethe maximalgroup H,

associatedwith HA by

(11) H, := Z~(zQ(HA))

and themaximalsubbundlein P associatedwith QA by

(12) QJ:=QA.HJ.

Furthermore,a subbundleQ( M, H) of theprinciplebundle P(M, C) is calledmax-

imal, if Z~(ZG(H)) = H. With thesedefinitions the following propositionis valid:

PROPOSITION1. EveryconnectionA E A’ canbcreduceduniquelyto aconnectionon

thesubbundicQ5 , and Q~is themaximalsubbundleof P wherej ~ J isconstant.

This canbe seenas follows: For A E A’ with stability group J and j E J, we

have I~J~A= j’Aj + j
1 dj = A . (3) Thismeansthat theequivariantmap

is constanton horizontalcurvesin P. Therefore,the restrictionof j on the holonomy
bundle QA(M, HA)po (4) is also constant.On the otherside,every equivariantmap-
ping j : P —* C whoserestrictionon QA is constant,belongsto the stability groupof

A (j J) . Sowehavefor JEJ and pE QA , with h~HA

(13) j(ph) = h~j(p)h j(p)

and it follows that

(14) jEJ4~.j:QA—ZG(HA) constant.

In addition, we have

(15) j(pg) = g’j(p)g = j(p)

(3)We makethe identificationbctweentheverticalautomorphismson P i,l’j E Aut v( P) = c
andtheequivariantmappingsC( P,C) = {f: P —+ C equivariant} given by ~j( p) = p~f( p)

(4) Sinceall ourconsiderationsarerelatedto somefixed p0 E P. we in generaldo notdenote
this dependenceexplicitly.
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for p E Q~and g E ZG(ZG(HA)) = H,. That nieansthat j is constanton the

subbundleQ~of P given by Q, = QA H, with structuregroup H,,. Q~is the
maximal subbundleof P on which j can be constant.The sameconsiderationsapply

alsoto anotherconnectionA’ E A’ from whichfollows thatalso theholonomybundle

QA’ is containedin themaximal subbundleQ~.That meansthat for theholonomy
group HA of ally A E A’, HA < H, is valid.

The reductiontheoremof connections[10] guaranteesthenthateveryconnectionA
with stability group J is reducibleto a connectionon thesubbundleQ~.

The possibledifferencebetweenthe holonomygroup HA andthe structuregroup

H, of themaximal subbundleQ~is illustrated in the following examplewith C =

SU(3)

HA J H,

SU(2) U(l) U(2)

(16) U(l) x U(I) U(l) x U(I) U(l) x U(l)

U(1) U(2) U(l)

1 SU(3) Z3

The choiceof the maximal subbundle Q, givesriseto the isomorphismgiven by

~9: J —* Z~(H,)
(17)

)H-*z3(q) EZ~(H,,)

Note that ~ dependsalso on the choice p~ sincewe have by construction H, =

H,(p0) and Q, = Q~(p0) . For a p = p0g with g E C we have

Q,(p) = Q~(p0) g

and

ZG(H,(p)) = g’ Zc(H,(po)) 9.

At this place, we would like to remarkthat, in constrastto the holonomygroup, the

maximalgroup H, is alwaysaclosedsubgroupof C. Thereforethereducedsubbundle

Q~is equippedwith the inducedtopology.

2.2 Theindependenceon thechoiceof a representativein the orbit type

We havenow to extendourconsiderationsfrom A’ to A~’~. Thatmeanswe have

to show the independenceof our resultson the specific choiceof the representativeJ
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in (J) . As alreadymentioned,the stratificationof A is classifiedby the set of the

orbit types S = {(J)}. The stratum A~’~which is given by the orbit type (J) , is
representedby

A(J)_ .1
— X N(J)/J

whichis independentof the choice J E (J) . For J, J’ E (J) with J’ = i/.’
1J1,b7’ for

some i,L~ E 9 , wehaveA’ = ¶1~A”whichmeans

(10\ •1’~
l.10) J~J’~,

Now thequestionariseswhich is theconnectionbetweenQ,, and Q~,.Theansweris
givenby thenextproposition:

PROPOSITION2. If thestabilitygroupsJ and J’ are 9—conjugatewith J’ = ¶1~jOJo

¶
1)f for some E 9, then thereexist maximalsubbundlescorrespondingto J and

J’ sothatQ,,=i,b
1(Q,).

In orderto provethis,wewould first like to showastrongerformulationof theabove

proposition:underthe sameassumptionsasabove,thereexistsa g E C sothat

(19) Q~=¶1.’~,.(Q,)•g.

For A,A’ E A
t1~with stabilizerthegroups J and J’ respectively,and

(20) J’=fJf~’ with fEQ

weconsiderthemaximalsubbundlesassociatedto J and J’, Q~and Q~,,respectively.

Wemaynow askhow Q~and Q,, arerelatedto eachother. Taking j E J and 5’ E J’

with

(21) )JQJ = z and =

wefirst show that thereexistsa g so that

(22) z=gz’gt

For p’E Q~~,pEQ, ,wecanhaveag sothat

(23) ¶1’7’(p’) ‘g~’ pEQ,
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From (21) we have

(24) 5(p) = z and ~‘(p’) =

and from (20), (21), (23) and(24) we obtain

(25) z = j(p) = 3 (~yI(pt) ~-‘) = ~J(~1~~) ~

and

(26) z’ = j’(p’) = f(p’) j(p’) f(p’) = ~ f(p~)~
t)= ~ (~I~p~)

so that indeed

(27) z=gz’

Now, sincewe know that given J~Q= z and )‘IQ, = z’ , thereexistsa g E C with
z = gz’g~ , we havefor everyp’ E Q~a p := ~ ?(p~) ~-I with

(28) j(p) = 5 (~‘(~‘). g’) = gi (~~‘(~‘))~.I = gj’(~)~

Sofrom themaximal propertyof Q,~,it follows that p E Q, , so we haveshownthat

(29) ~ (Q,,) . C Q, and Q,~C ~ (Q,) g.

Similarly, startingwith p E Q~, we alsoobtain

(30) t,bj(Qj).gCQ,,

and wehaveshownthat

(31)

Usingnow the factthat Q~ =: Q~,is alsoa maximal subbundle,we have

(32) Q~,= ~ (Q,)

which is preciselytheconjectureof theproposition.

It is easyto seethat from Q,,, = ~

1(Q,)g it follows that J’ = J~ I
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2.3 Theclassification

Having in mind the resultsof theprevioussubsections,we cancontructa relation

betweenthe stratificationof A eq. (5) on the oneside,andsomespecific reducedsub-
bundlesof P on theotherside. Theinterestfocuseson the strataotherthanthemain
stratum := Ac~.

Weconsiderthe set V of reducedbundlesQ withstructuregroup H < C so that

H = ZG(ZG(H)) , (thismeansthat ~ is maximal),and thepropertythat if Q is not
connectedand H’ is the structuregroup of a connectedcomponent,then thereexists
no maximal subgroup !i < C with H’ < R < H (5). Thenwedefineon 2, the

setof maximal subbundlesof P with the aboverestriction,thefollowing equivalence

relation:

(33) Q’ “~ Q ‘~z~’.~i,b~.E 9 and g E C so that Q’ = ¶1’~(Q) g.

We cannow definetheset T := ‘P1 “~ whichis bijectiveto S via themapping.

(34)
(J) i.—~(Q,).

Sowe haveexpressedthestratificationof A by classesof reducedbundlesin P. That
meansthat the stratificationis given by group-theoreticalandtopological informations.

As oneexpects,theremaybe topologicalobstructionsagainstthe existenceof reduced

bundles[11]. The set S ~ T itself is a countableset [12,13].
In orderto demonstratethe relationbetweenS and T, we study thefollowingex-

ample,where S~ T. Weconsiderthetrivial principalbundle P = S2 x SU(2) . The

possiblemaximal subbundlesare P itself and Q,~for n e N with

= s2 x z
2, Q1 = S

2 x U(l), Q
2 = S

3

and Q~=S3/Z~_
1 for n�3.

So we have

(36) T= {P,{Q~},~~N}

Thestratificationof A is determinedby I’:

(5) Without this restrictionthereis no correspondingholonomybundle.
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Thestability groupsaregivenby

(37) := {j 5: Q~ Z,U(
2)(JIfl) constant}

where H0 = Z2 , H,~~ U(1) for n ~ 1’ and

(38) Z,U(2)(Ho) = SU(2), ZsU(2)(Hfl) U(l)

aIld

(39) A = A(z2) u A~’~

4(z2) is themain stratum.

3. THE STRUCTURE OF THE ORBIT BUNDLES A~’~

As already mentionedin the previoussection,the standardprincipal bundle A~,

associatedto theorbit bundle A~’~,containssomeinformationaboutthereducibility of

its elementsbut this information is not complete.In this sectionwe would like to give

the precisecharacterizationof A” which is relatedto the reducibility propertiesof its

elements.This leadsto a principal bundleisomorphismbetweenA’ anda subsetAQ
of the main orbit bundle AQ in thespaceof connectionsAQ of the maximalbundle
Q,,.

3.1 The isornorphism between A~and AQ

In this subsectionwe give the precisedefinition of the spaceAQ and in addition

provethe bijection betweenA’ and
Let Q,, = Q,(M, H,,) be a maximal subbundle of P ,associatedto the stability

group J <9, ~ the spaceof connectionson Q~and

(40) f3:J—~C

the homomorphisminducedby Q, from the stability group into the structuregroup.
The spaceAQ is thendefinedby

(41) ,
4~ := {A eA~~ZQ(HA) =

with HA the holonomygroupof A. From this definition it follows that

A’~cA CA CAQJ QJ QJ Qi
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where AQ~is themainorbit bundlein Q, and A~5r~arethe irreducibleconnectionsin
The following propositionisvalid:

PRoPosmoN3. Theconnectionsin P withstabilitygroupJ areisomoiphicto AQ.

A’ ~ AQ.

In orderto seethis, let

a : A’ —. A
(42)

A ~-‘ A~

bethemappingwhich associatesto every connectionA E A’ its reducedconnection
A~E Q,. Everyconnectionfrom A’ is uniquely reducibleto a connectionon Q,,
hencethis mappingis injective. Since A and AT~~Ihavethe sameholonomygroup,it

follows that

(43) ZG(HA,~)= ~(J)

sowehave

a : A’ ~.

Notealsothat the stability groupof At~is givenby /3( J) fl H, = C( H,)
In order to show the surjectivity, we take w E AQ. Sothereexistsuniquely an

elementA E A with w = A1~= a(A) since for theholonomygroupswehaveagain

HA,~= HA and Zc(HA) = ZG(II~)= ~3(J). So J is the stability groupof A and
the surjectivityof a isproven. U

In generalAQ1 is a subspaceof themain orbit bundle AQ. This situationis re-
latedto thefactthat the stratificationcontainsonly someincompleteinformation about

reducibility. Takingasan exampleP = M x SU(3), M contractible,we canseethat
indeed.,4~~ A~ may occur. In thefollowing tablewe exhibitthevariousstability

andmaximal subgroupsof SU(3)

J H,

Z3 SU(3)

2 U~(1) U(2)

3 U~..(l)x UT(l) U~(l)x UT(l)

4 U(2) U~(l)

5 SU(3)
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here U.~.(I) denotestile U( 1) of the Elyperchargeand UT( I) the U( 1) subgroup

generatedby tile 3-componentof isospin.Correspondingto case3, a connectionw on
tile maxima]subbundleQ~(M, U~(I) x UT( U) whichis reducibleto aconnectionon

tile subbundleQ,3(M, U~(U) is considered.Since H~is an Abeliangroup,we have

= A,~. This w canbe consideredas a connectionA on P (with A~ = w).
Its stability group is given by ZG(HA) . Since w is reducible to HA = U~(I) we

haveZ~(U( U) = U(2) which meansthat it belongsto A”’ A~ . Sowe have

(44) AQ C A~

In contrastin case2 we haveA = AQJ2 Qf2

3.2 Thegroup isomorphismbetweenN(J)/J and

As we already know, ,4~ is a suhspaccof .4~, the main orbit bundlein AQ
Sincethe group ~1Q actson ,4~ freely, ,

4~ is also a principal bundlewith fibers

isomorphic10 cQ/c(HJ) =: . We may thereforesuspectthebijection shownin

tile lastpropositionbetween,4J and ,4~ to be a principal bundleisomorphism. In

orderto prove that this is indeedthe case,we first showthegroupisomorphismbetween

N( J)/J and ~Q/C(HJ) ,andthentile bijectionbetweenA~”~/cand AQJ/cQJ

pRor’osmoN4. Thereis thegroupisomorphismN(J)/J /C(H,,)

Themainstepto provethis isto realizethat N( J) canbewritten as N( J) = 9~.J
We first definethe group

(45) N(J) := {f: Qj NG(ZG(HJ)) fE ç~ equivariant}.

For nE N(J) and 5,5’ E J,wehave

(46) nj n1 =

andfor q E Q,, we have

(47) ~ q) 5(q) ~ q) I = 3’( q)

with 5(q), j’(q) E Z~(H,). So ~p) E NQ(ZG(H,)) and N(J) <N(J).
Now we dctenuinetile condition for n E N( J) to beelementof N( J) . For q and

p E Q~, since j(q) = 3(p) and j’(q) = j’(p) , we have

(48) n~p)5(p)n(p).1 = n~q)5(p)n~q)I
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and

3(p) = n(p)~n(q)j(p)n(q)~rz(p)
(49)

= n(p)~n(q)j(p)(n(p)~n(q)~t

and n(p~’n(q)E Z~(Z~(H,))= H, Vp,q E Q~.
Sowe canwrite for a fixed p E Q,

(50) n(q) = n(p) (n(pY’ri(q))

and wedefine

Q,, —÷ H,
(51)

q ~-. ç~
1(q):= n(pY~n(q)

Sowe haven(q) = n(p)~1(q).Since Z~(H,)isclosedin C,we canwrite

(52) Nc(Z~(H,))Z~(H,)’H,

(53) n(p) = z(p)h(p)

with z(p) = z(q) E ZQ(HJ) and h(p) E H, wecanwrite

(54) n(q) = z(q) ço(q)

with

~p: Q~—~ H,
(55)

q i.—~~o(q) := h(p)ço1(q)

equivariant.Since zh= hz, ~ is indeedequivariant,which follows from eq.(54):

(56) zço(qh)= ri(qh) = h~n1~q)h= h
tz~(q)h= zh’~(q)h

E Q~ andwehaveshownthat

(57) N(J) = . J.

Fromthis, it follows that

(58) N(J)/J~9Q~.J/J9Q~/Jfl9Q~ 9Q
1/C(H,)

which completesourproofof theabovepropositionandwehavethegroupisomorphism

~3: N(J)/J
9~/C(H,)

(59)
[n] ‘—~ [‘p1
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3.3 Tile principal bundleisolnorphismbetweenA~(M~’~,g/J)and ~4Q(Jv1Q,

cQ/C(HJ))

PROPOSITIONS.Thereis the isomorphismA~”~/9~

In orderto prove this, we first define themapping

‘~y: ..
4~ /~Q —p A~”~/g

(60)
[wJ ~ ‘y([w]) := [&(w)]

with E~= c~ ,the inverseof a (seeproposition3) andwherewE ..4~ and &(w) =:

~ E A~”~. We first haveto showthat ‘y is well defined: taking Lw
1 I and 1w] with

= ~w and ~ E
9~,weuse &(~w) = i,b(&(w)) . This is theequivarianceof

themap & underihegaugegroup. Onthe right handsideof thelastequation ~ E

is uniquelyextendedto P. We have

(61) I&(wl)1 = [&(~w)j = [~(&(w))] [&(w)j

SO that ‘y is well defined.
For tue injectivity of ‘y wehaveto show that from w and 9 E ..4~ , with

(62) ‘y(1wj)~y([Ol)[A]

[wJ = 191 is valid. Fromeq. (62) we have &(w) = A = ~ E A” and

(63) &(9) = i,bJA = ~ E A” with~
1E 9.

Since~, ~ E A” for 5 E J , we have

(64) f = =

\~hicilmeansthat ~ E N(J) for which we canwrite ~b1.= 31 o with ~ E

and 51 E J , as wasshownin thepreviousproposition. Sowe have

(65) 0= ~(~) =a(~) = (~(L2)) =i,bw

v~hich showsthe injcctivity of ‘y

For flue suujcclivity we have to showthat every I B] E A~”~/gis the inlageof

SOnIC Ch~IIlCflI of ,4~/cQ . If B has J’ as its stability group, it is possibleto find

an f ~ ~‘, so that F = I Jf. Then i~B= A has J as its stability group and
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a(A) = A~’E AQ . Sowehave&(A~)= A and ~y([AT~]) = [Al = [B] which

showsalsothesurjectivityof ‘~.

FromtheisomorphismbetweenA’ and..4~, giveninsubsection3.1, andfrom the
lasttwo propositions,theprinciplebundle isomorphism

(66) A”CMt’~,N(J)/J)~‘AQ
1(JvtQ~,QQ1/C(H,))

canbe shownimmediately.Giventhe isomorphisms

a: A’ —,

‘y: )vt~ -~ JvlQ
(67)

and

/3: N(J)/J —~ QQ,/C(H,)

[n] ~-+ [ço1=~[n1

wehaveonly to showthat

(68) a([nVA) = ~([n])* a(A)

(with A E A’ and [nl E N(J)/J) is valid. This is easyto seesince wehavethe

equivarianceof the map a (usedalreadyin theproof of proposition 5):

(69) fl*A [n]*A= ‘p*A= [‘pYA

and

(70) a [~]*] = a([’pFA) = [‘p]*a(A) = /3([nI)*a(A)

With theaboveprinciplebundleisomorphism,we canexpresstheorbit bundle A<’) by

(71) At’~~ AQ~XQQ /C(H~)

4. CONCLUSION

In this paperwehavestudiedthenonfreeactionof the gaugegroup 9 onthe space

of gaugepotentialsA onaprinciplebundle P( M, C) . Wehaveanalysedthestructure
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of the soobtainedstratification on A and in particularthe structureof a fixed stratum

A~”~ifl tile generalcase,whereA~”~is not the main stratum. Wewere ableto show
thateveryflollfllain stratum A~”~canbeunderstoodin termsof themain stratumwhich
correspondsto thestratificationof thespaceof connectionson a subbundleQ,( M, H,)
of P andto give thegeneralprocedurewhich allows to determinethe setof orbit types

$ = (J) gcneratedby theactionof thegroup 9 on thespaceA.
As yet, it is not at all clearwhat rolethe stratificationplays in physics. It may well

be that the stratificationis an importantcluein thequantizationof Yang-Mills theories

whoserole may havebeencompletelyoverlooked. Our analysisconstitutesthe first
stepin clarifying this question.In addition to this, the stratificationseemsto be closely

connectedwith thequestionof conservationlaws,anomaliesandeven the mechanism

of spontaneoussymmetrybreaking.

In orderto recognizethestructureof thestratum A~‘~ , we observethat its elements,

the reducibleconnections,havein generaldifferentholonomygroupsandconsequently

correspondto different holonomy bundles. The sameis true evenif we restrictour-

selvesto a standardprinciple bundle A” , the connectionswith fixed stability group

J (.4” C
4(i)) . Nevertheless,as we haveshown, thereexistsa subbundieof P

the maximal subbundleQ~, andeveryconnectionin A’ is reducibleto a connection

on Q~. Tills <<rough>> reducibility is the propertywhich characterizestheelementsof
It is interestingto note the reasonwhy this happensand that a direct construc-

tion of themaximal subbundleQ, may be realizedandobtainedby the methodsof

C-theory discussedin [131. Here we would like only to point out that the reasonfor

thecorrespondencebetweenA’ and Q~is thatboth arestandardprincipal bundlesof

the 9 x C-actionon A and P respectively,with essentiallythe samestability group

isomorphicto J. This explainsalso the fact that the stratum A~”~correspondsto a

9 x C orbit of Q~as it wasshownin our secondproposition (Ch. 2.2). From this

point of view the classificationof the stratification(Ch. 2.3) also seemsplausible. For

a given stratum A~”~in particular, by the useof its equivariantproperties, we were

ableto provethe following: theorbit spacesA~”~/9,apart of the configurationspace

of Yang-Mills theories,is isomorphicto the .AQ/cQ . ..4~ is a specificsubset(de-

fined in (41)), of the main stratumof connectionson themaximal subbundleQ~cor-
respondingto the stratum (J) (in somecasesit is isomorphicto it). Togetherwith

thegroupisomorphismN( J)/J ~ cQ we havetheprincipal bundleisomorphismof

N(J)/J —# A” —~ A~”~/cand —+ .4~—~ AQ~/c~with = 9Q~/C(H,).
A” , tile connectionswith afixed stabilizer I, is theunderlyingprincipal bundleof the
homogeneousbundle A~’~A’ x N(J)/J

With the aboveisomorphismswe can representthe nonmainorbit bundle A~~>in
temisof (apart of) the main orbit bundle ..4~

(71) A~’~AQ X~ 9/J.
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